Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 16206-16215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334921

RESUMO

This paper has presented a mini review of previously published articles dealing with bio-cement production using enzyme-induced calcite precipitation (EICP) technique. EICP is a biological, sustainable, and natural way of producing calcite without the direct involvement of microorganisms from urea and calcium chloride using urease enzyme in water-based solution with minimum energy consumption and eco-friendly. Calcite is a renewable bio-material that acts as a binder to improve the mechanical properties of soils like strength, stiffness, and water permeability. EICP has many real applications such as fugitive duct control with low cost comparing with water application or pouring, self-healing cracked concretes, and upgrade or change the low-volume road surfaces that are difficult for road constructions. The crystal structure of finally produced calcium carbonate (CaCO3), calcite is affected by the source of calcium ion; the calcite produced from calcium chloride has a rhombohedral crystal structure. The urease enzyme used for EICP applications could be produced in a laboratory-scale from different plant species, bacteria, some yeasts, fungi, tissues of humans, and invertebrates. Nevertheless, urease enzyme produced from jack beans has showed urease enzyme activity around 2700-3500U/g, and the tendency to replace the urease enzyme found in the global market. All urease enzymes have 12-nm size, and this smaller size makes EICP preferable for all types of soil or sands including fine and silt sands.


Assuntos
Carbonato de Cálcio , Areia , Humanos , Carbonato de Cálcio/química , Urease , Cloreto de Cálcio , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...